public class MFitsStatistic extends Object
| Modifier and Type | Class and Description |
|---|---|
static class |
MFitsStatistic.Scale |
| Constructor and Description |
|---|
MFitsStatistic() |
| Modifier and Type | Method and Description |
|---|---|
private static boolean |
allPrimary(List<MImageHDU> img)
If all image hdus are primary, return true.
|
static MImageHDU |
artificialFloatBias(double level,
double readnoise,
int... axes)
Creates an artificial bias image with the average bias level and a
read-noise in ADUs.
|
static MImageHDU |
artificialFloatFlat(double bias,
double readnoise,
double light,
double gain,
int... axes)
Creates an artificial flat image with the stated bias, read-noise, gain
and illumination properties.
|
static MImageHDU |
artificialShortBias(double level,
double readnoise,
int... axes)
Creates an artificial bias image with the average bias level and a
read-noise in ADUs.
|
static MImageHDU |
artificialShortFlat(double bias,
double readnoise,
double light,
double gain,
int... axes)
Creates an artificial flat image with the stated bias, read-noise, gain
and illumination properties.
|
static MImageHDU |
avSigClipCombine(List<MImageHDU> flat,
MFitsStatistic.Scale mode,
boolean combav,
double siglo,
double sighi,
int keep,
boolean useav,
int nmax)
Combines images with the avsigclip algorithm, which is suitable for
photon-noise limited data (or no read-out noise data).
|
static int |
fillAduCovSums(ArrayLayout al,
double[] fcor1,
double[] fcor2,
Map<Statistic.Cov,Double> cov,
Map<Statistic.Imo,Double> img1,
Map<Statistic.Imo,Double> img2,
Map<Statistic.ImCov,Double> imcov)
Calculates all statistical covariance sums over the two (flat) ADUs.
|
static int |
fillAduCovSums(ArrayLayout al,
float[] fcor1,
float[] fcor2,
Map<Statistic.Cov,Double> cov,
Map<Statistic.Imo,Double> img1,
Map<Statistic.Imo,Double> img2,
Map<Statistic.ImCov,Double> imcov)
Calculates all statistical covariance sums over the two (flat) ADUs.
|
static Vector2D |
getFwhmAndIntensityM(double[] adu,
double back,
double thresh)
From the raw adu counts and an background estimation, we calculate peak
intensity and FWHM of a gaussian distribution with same average and
variance.
|
static MImageHDU |
minMaxCombine(List<MImageHDU> dark,
boolean dumphi,
boolean dumplo)
Combines images by rejecting just the maximum abd/or minimum of the
combined ADUs.
|
private static float[][] |
sanityCheck(List<MImageHDU> bias,
ArrayLayout al)
Takes a list of images and returns a two-dimensional float array,
first index is the image number, then element number.
|
private static FitsHeader |
sanitySize(List<MImageHDU> bias)
Takes a list of images and returns their layout, if equal
|
static MImageHDU |
zeroCombine(List<MImageHDU> bias,
boolean combav,
double rn,
double gain,
double siglo,
double sighi,
int keep,
boolean useav,
int nmax)
Takes a list of input image hdus and performs a zero-combination on
these.
|
public static final String FLATRMS
public static final String FLATSEM
public static final String FLATAV
public static final String FCOMBINE
public static final String FRMSMAX
public static final String FXRMS
public static final String FYRMS
public static final String FMAXREJ
public static final String FXMAX
public static final String FYMAX
public static final String FAVREJ
public static final String ROWGAIN
public static final String RGAINMAX
public static final String ROWMAX
public static final String RGAINMIN
public static final String ROWMIN
public static final String MMRMS
public static final String MMSEM
public static final String MMAV
public static final String MMCOMB
public static final String MMRMSMAX
public static final String MMXMAX
public static final String MMYMAX
public static final String BIASRMS
public static final String BIASSEM
public static final String BIASAV
public static final String ZRMSMAX
public static final String ZXRMS
public static final String ZYRMS
public static final String ZCOMBINE
public static final String ZMAXREJ
public static final String ZXMAX
public static final String ZYMAX
public static final String ZAVREJ
private static final String FLATRMSREM
private static final String FLATSEMREM
private static final String FLATAVREM
private static final String FRMSMAXREM
private static final String FXRMSREM
private static final String FYRMSREM
private static final String FCOMBINEREM
private static final String FMAXREJREM
private static final String FXMAXREM
private static final String FYMAXREM
private static final String FAVREJREM
private static final String ROWGAINREM
private static final String RGAINMAXREM
private static final String ROWMAXREM
private static final String RGAINMINREM
private static final String ROWMINREM
private static final String MMRMSREM
private static final String MMSEMREM
private static final String MMAVREM
private static final String MMCOMBREM
private static final String MMRMSMAXREM
private static final String MMXMAXREM
private static final String MMYMAXREM
private static final String BIASRMSREM
private static final String BIASSEMREM
private static final String BIASAVREM
private static final String ZRMSMAXREM
private static final String ZXRMSREM
private static final String ZYRMSREM
private static final String ZCOMBINEREM
private static final String ZMAXREJREM
private static final String ZXMAXREM
private static final String ZYMAXREM
private static final String ZAVREJREM
public static Vector2D getFwhmAndIntensityM(double[] adu, double back, double thresh)
adu - array of the image ADUs.back - background estimation in ADUs.thresh - If negative, use all pixel, otherwise only those at least
thresh above back.public static MImageHDU artificialFloatBias(double level, double readnoise, int... axes) throws BasicFitsException
level - The bias levelreadnoise - The read-noise in ADUs (no gain)axes - Dimension of imageBasicFitsExceptionpublic static MImageHDU artificialShortBias(double level, double readnoise, int... axes) throws BasicFitsException
level - The bias levelreadnoise - The read-noise in ADUs (no gain)axes - Dimension of imageBasicFitsExceptionpublic static MImageHDU artificialShortFlat(double bias, double readnoise, double light, double gain, int... axes) throws BasicFitsException
bias - The bias level in ADUsreadnoise - in electronslight - the illumination level in ADUsgain - The gain of the CCD, ADU*gain=e-axes - Dimension of imageBasicFitsExceptionpublic static MImageHDU artificialFloatFlat(double bias, double readnoise, double light, double gain, int... axes) throws BasicFitsException
bias - The bias level in ADUsreadnoise - in electronslight - the illumination level in ADUsgain - The gain of the CCD, ADU*gain=e-axes - Dimension of imageBasicFitsExceptionpublic static final int fillAduCovSums(ArrayLayout al, double[] fcor1, double[] fcor2, Map<Statistic.Cov,Double> cov, Map<Statistic.Imo,Double> img1, Map<Statistic.Imo,Double> img2, Map<Statistic.ImCov,Double> imcov)
fcor1 - First (flat) fieldfcor2 - Second (flat) field.public static final int fillAduCovSums(ArrayLayout al, float[] fcor1, float[] fcor2, Map<Statistic.Cov,Double> cov, Map<Statistic.Imo,Double> img1, Map<Statistic.Imo,Double> img2, Map<Statistic.ImCov,Double> imcov)
fcor1 - First (flat) fieldfcor2 - Second (flat) field.public static MImageHDU zeroCombine(List<MImageHDU> bias, boolean combav, double rn, double gain, double siglo, double sighi, int keep, boolean useav, int nmax) throws BasicFitsException
BasicFitsExceptionpublic static MImageHDU minMaxCombine(List<MImageHDU> dark, boolean dumphi, boolean dumplo) throws BasicFitsException
BasicFitsExceptionpublic static MImageHDU avSigClipCombine(List<MImageHDU> flat, MFitsStatistic.Scale mode, boolean combav, double siglo, double sighi, int keep, boolean useav, int nmax) throws BasicFitsException
BasicFitsExceptionprivate static boolean allPrimary(List<MImageHDU> img)
private static FitsHeader sanitySize(List<MImageHDU> bias) throws BasicFitsException
bias - BasicFitsException - If list is null, empty or not all images have identical size.private static float[][] sanityCheck(List<MImageHDU> bias, ArrayLayout al) throws BasicFitsException
bias - BasicFitsException - If list is null, empty or not all images have identical size.